py nvme
Release 2.3.2

cranechu@gmail.com

Sep 28, 2023

TABLE OF CONTENTS

Introduction 2
1.1 Background L e e e e e e e 2
1.2 Design . . . o o e e e e e e e e e 2
Install 4
2.1 Al-In-0One . . . oL e e e e 4
2.2 System Requirements Lo e e e e e e e e e e 4
23 Source Code e e 5
2.4 PrerequiSites v v e 5
2.5 SPDK . . . 5
2.6 Test e e e 6
27 PIP o e 6
Pytest 7
310 FIXIUIES . . o o o o o e e e e e e e e e e e e 7
3.2 EXECULION o v i i e e e e e e e e e e e e e e e e e e 7
VSCode 9
4.1 Layout e e 9
42 Setup e e e e e e 10
Features 11
5.1 PCle . . . o 11
52 Buffer. 11
53 Controller. e e e e 12
540 QPaIr . .. e e e e e e e e e e e e 17
5.5 NameSpaCe o o v v e e e e e e e e e e e e e e e e 18
5.6 TOWorker L . o e e e e 20
5.7 Miscellaneous oL e e e e e e e e e e 25
Examples 29
6.1 Exl:helloworld e e e e 29
6.2 Ex2:sanitize e e 30
6.3 Ex3: parameterized teStS e e e e e e e e e e e e e 30
6.4 Ex4:upgrade andrebootthedrive 31
6.5 Ex5: write drive and monitor temperature oL .ol e e e e e e e e e e 31
6.6 Ex6: multiple ioworkers on different namespaces and controllers 31
6.7 Ex7: format and fused operations Lo o e e 32
Development 33
7.1 Files . . . e 33

7.2 RePOSIOTY . . v v o o e 33

T3 CL. o e e e e 34
T4 Debug . . .o e e e e e e e 34
7.5 Socket . ..o e e e e 34
nvme 36
8.1 Buffer. e 36
8.2 Controller. e e e e e e e e e e e e e e 38
83 Namespace o i e e e e 47
84 Pcie . . . e e e e e e 55
8.5 Qpair e e e e e e e 57
8.6 srand L e e e 58
8.7 Subsystem e e e 58
88 TP . o e e 60

pynvme, Release 2.3.2

Pynvme is an user-space NVMe test driver with Python APL. It is an open, fast, and extensible solution for SSD devel-
opers and test engineers to build their own tests intuitively.

Quick Start in 3 Steps!
1. Clone pynvme from GitHub: https://github.com/pynvme/pynvme

git clone https://github.com/pynvme/pynvme

2. Build pynvme:

cd pynvme
./install.sh

3. Run pynvme tests.

make setup
make test TESTS="driver_test.py::test_ioworker_iops_multiple_queue[1]"

In this document, we explain the design and usage of pynvime, and you can soon build your own tests of NVMe devices.

pynvme builds your own tests.

TABLE OF CONTENTS 1

https://github.com/pynvme/pynvme
slogen.png

CHAPTER
ONE

INTRODUCTION

1.1 Background

Storage is important to client computers, data centers and enterprise servers. NVMe is a fast growing standard of
storage in the era of Solid State Storage. However, we were still using traditional testing tools which are not designed
for NVMe compeatibility, performance, reliability and rapid evolution. These tools became the bottleneck of the project.
First, most of the existed tools do not provide source code or API, so it is very difficult to be integrited into the automatic
test flow, which is critical to Agile project management. Second, many testing tools are developed in HDD/SATA era,
so it cannot consistently benchmark the super-fast NVMe SSD. Last but not least, NVMe specification is keeping
growing, but the testing tools cannot be changed rapidly. Then, pynvme comes.

1.2 Design

Pynvme is an user-space PCle/NVMe test driver with Python APL. It is open, fast, and extensible.

Open. Every people and team can use it and make contributions to pynvme. Instead of the GUI-based applications,
pynvme is designed as an open Python module. With pynvme, as well as the whole Python ecosystem, engineers can
efficiently develop and deploy their own test scripts.

Fast. Pynvme is an user-space software. It bypasses the whole Kernel and accesses PCle/NVMe hardware resources
directly to eliminate system-call overhead. Pynvme is also a poll mode driver (PMD), which further eliminates the cost
of interrupts. So its performance is very high and consistent.

Extensible. Pynvme provides API to access PCle and physical memory. As the result, a client can read/write PCle
configuration space, PCle memory space (aka BAR space), and physical (instead of logical) memory space. These
low-level capabilites open doors to many more innovations.

We did not build pynvme from scratch. We build it based on the SPDK, a reliable software stack from Intel. We
extended SPDK NVMe driver with several testing-purpose functions in pynvme:

1. Interrupts. SPDK is a polling mode driver, so it does not support interrupts, like MSIx and MSI. We implemented
a software interrupt host controller to enable and check interrupt signals.

2. Checksum. Storage cares data integrity. Pynvme verifies each LBA block with CRC32 checksum, without any
penalty on performance.

3. Cmdlog. Pynvme traces every command and completion dwords. When any problem happens, users can check
the trace data to debug the issue.

4. IOWorker. It is slow to send each IO in test scripts, therefore pynvme provides an agent to send IOes in separated
processes. Users can create multiple IOWorkers with little overhead.

https://spdk.io/

pynvme, Release 2.3.2

We then wrap all these SPDK and pynvme functions in a Python module. Users can use Python classes (e.g. Controller,
Namespace, ...) to test NVMe devices. Here is an identical script as SPDK’s 400-line example: https://github.com/
spdk/spdk/blob/master/examples/nvme/hello_world/hello_world.c

import pytest
import nvme as d

def test_hello_world(nvme®, nvme®nl, gpair):
prepare data buffer and IO queue
read_buf = d.Buffer(512)
write_buf = d.Buffer(512)
write_buf[10:21] = b'hello world'

send write and read command

def write_cb(cdw®, statusl): # command callback function
nvmeOnl.read(qpair, read_buf, 0, 1)

nvmeOnl.write(gpair, write_buf, 0, 1, cb=write_cb)

wait commands complete and verify data
assert read_buf[10:21] != b'hello world'
gpair.waitdone(2)

assert read_buf[10:21] == b'hello world'

Now, let’s install pynvme to execute test scripts.

(2]

1.2. Design

pic/pynvme.png
https://github.com/spdk/spdk/blob/master/examples/nvme/hello_world/hello_world.c
https://github.com/spdk/spdk/blob/master/examples/nvme/hello_world/hello_world.c

CHAPTER
TWO

INSTALL

2.1 All-in-One

Users can build pynvme by simply running install.sh after getting source code from github. This is the recommended
method to compile pynvme.

git clone https://github.com/pynvme/pynvme
cd pynvme
./install.sh

Now, it generates binary python module nvme.so. Users can import it in Python scripts:

import nvme as d
nvme® = d.Controller(d.Pcie("01:00.0"))

We will describe more details of installation below. You can skip to the next chapter if you have already got the binary
nvme.so.

2.2 System Requirements

Pynvme is a software-defined NVMe test solution, so users can install and use pynvme in most of the commodity
computers with some requirements:

1. CPU: Intel x86_64, 4-core or more.

Memory: 4GB or larger.

OS: Linux. Fedora is recommanded.

Python3: Python?2 is not supported.

sudo privilege is required.

NVMe: NVMe SSD is the devices to be tested. Backup your data!
RAID mode (Intel® RST): shall be disabled in BIOS.

Secure boot: shall be disabled in BIOS.

IOMMU: (a.k.a. VT for Direct I/O) shall be disabled in BIOS.
VMD: shall be disabled in BIOS.

. NUMA: recommend to be disabled in BIOS.

© ® N A » N

—_— e
N o= O

. SATA: recommend to install OS and pynvme in a SATA drive.

pynvme, Release 2.3.2

2.3 Source Code

We clone the pynvme source code from GitHub. We recommend to checkout the latest stable release.

git clone https://github.com/pynvme/pynvme
cd pynvme
git checkout tags/2.3.2

Or you can clone the code from the mirror repository:

git clone https://gitee.com/pynvme/pynvme

2.4 Prerequisites

Then, we need to fetch all required dependencies.

fedora-like
sudo dnf install -y make redhat-rpm-config python3-devel python3-pip

ubuntu-like
sudo apt install -y python3-setuptools python3-dev python3-pip

get SPDK and its submodules
git submodule update --init --recursive

install SPDK required packages
sudo ./spdk/scripts/pkgdep.sh

install python packages required by pynvme
sudo python3 -m pip install -r requirements.txt

2.5 SPDK

We need to compile and test SPDK first.

use the according pynvme-modified SPDK code
cd spdk
git checkout pynvme_2.3

configure SPDK
./configure --without-isal;

compile SPDK
cd ..
make spdk

compile pynvme
make

Now, we can find a generated binary file nvme.so.

2.3. Source Code 5

pynvme, Release 2.3.2

2.6 Test

After compilation, let’s first verify if SPDK works in your platform with SPDK applications. Before moving forward,
check and backup your data in the NVMe SSD.

setup SPDK runtime environment
make setup

run pre-built SPDK application
sudo ./identify_nvme

This application lists identify data of your NVMe SSD. If it works, let’s move ahead to run pynvme tests!

cd ~/pynvme
make setup
make test TESTS="driver_test.py::test_ioworker_iops_multiple_queue[1]"

After the test, we can find the file fest.log in pynvme directory, which keeps more debug logs than that in the standard
output. When you meet any problem, please submit issues with this zest.log.

make setup allocates hugepages and reserves NVMe devices for SPDK runtime environment. When you want to release
memory and NVMe devices back to kernel, execute this command:

make reset

2.7 pip

As an alternative way, we can also install pynvme with pip in the latest Fedora Linux.

pip install pynvme

cd /usr/local/pynvme

make setup

make test TESTS="driver_test.py::test_ioworker_iops_multiple_queue[1]"

It installs a prebuilt pynvme binary module. But we still recommend to clone pynvme source code and compile it by
install.sh.

2.6. Test 6

CHAPTER
THREE

PYTEST

The pytest framework helps developers writing test scripts from simple to complex. Pynvme is integrated with pytest,
but it can also be used standalone.

3.1 Fixtures

Pytest’s fixture is a powerful way to create and free resources in the test. Pynvme provides following fixtures:

fixture scope notes

pciaddr session | PCle BDF address of the DUT, pass in by argument —pciaddr
pcie session | the object of the PCle device.

nvme0 session | the object of default NVMe controller

nvmeOnl | session | the object of first Namespace of the default controller

verify function | declare this fixture in test cases where data CRC is to be verified.

In the following example, the fixture nvmeOnl initializes the namespace for the test. Then, we can use it to start an
ioworker directly. Super intuitive!

def test_ioworker_simplified_context(nvme®Onl):
with nvmeOnl.ioworker(io_size=8, lba_align=16,
lba_random=True, qgdepth=16,
read_percentage=0, time=2):
pass

We no longer need to repeat nvmeOn1 creation in every test case as usual way:

nvme® = d.Controller(b'01:00.0")
nvme®Onl = d.Namespace(nvme®, 1)

3.2 Execution

With pytest and pre-defined makefile, we can execute tests in many flexible ways, like these:

all tests under the directory
make test TESTS=scripts

all tests in one file

(continues on next page)

https://pytest.org/en/latest/

pynvme, Release 2.3.2

(continued from previous page)

make test TESTS=scripts/demo_test.py

a specific test function
make test TESTS=scripts/utility_test.py::test_download_firmware

a test function with a specified parameter
make test TESTS="driver_test.py::test_ioworker_iops_multiple_queue[1]"

start tests on multiple drives with 1GB reserved memory space each

make test TESTS=scripts/stress/endurance_test.py::test_replay_jedec_client_trace.
—pciaddr=01:00.0

make test TESTS=scripts/stress/endurance_test.py::test_replay_jedec_client_trace.
—pciaddr=02:00.0

make test TESTS=scripts/stress/endurance_test.py::test_replay_jedec_client_trace.
—pciaddr=172.168.5.44

Without specified pciaddr commandline parameter, make test automatically uses the last PCle NVMe device in the Ispci
list. Pynvme supports multiple test sessions with different NVMe devices, or even NVMe over TCP targets, specified
in the command line.

3.2. Execution 8

CHAPTER
FOUR

VSCODE

VSCode is an excellent source code editor and IDE. It supports python and pytest with an offical extension: https:
//github.com/microsoft/vscode-python. We developed another extension for pynvme to make VSCode more friendly
to SSD test.

4.1 Layout

@ TesT TERMINAL

4 PYTHON
p 1@ s

%

latform linux

® e temperature[100]

N

nvmed .getl. E o itdone()
ktemp

logging. in % k2c(kte
Time p

= CMDLOG 0000:01:00.0 Q01

, 0x00000001,
00000000, Ox2
0x00000000, 00000000, 0x18
0x00000007
not complete

S ’ 0000000
'ﬂ' not completed

Pmaster* O Pymﬂ.u 64-bit €@ 0A0 © debug pynvme script (pynvme) No Tests Ran Ln1,Col1 Spaces:4 PlainText @ A

A. Activity Bar: you can select the last Test icon for pytest and pynvme extensions.
B. pytest panel: collects all test files and cases in scripts directory.

C. pynvme panel: displays all active gpairs in all controllers. Click gpair to open or refresh its cmdlog viewer. Click
the icon in the upper right corner to open a performance gauge.

editor: edit test scripts here.
cmdlog viewer: displays the latest 128 commands and completion dwords in one gpair.

log viewer: displays pytest log.

https://github.com/microsoft/vscode-python
https://github.com/microsoft/vscode-python
pic/vscode_area.png

pynvme, Release 2.3.2

4.2 Setup

1. First of all, install vscode here: https://code.visualstudio.com/

2. Root user is not recommended in vscode, so just use your ordinary non-root user. It is required to configure the
user account to run sudo without a password.

sudo visudo

3. In order to monitor gpairs status and cmdlog along the progress of testing, user can install vscode extension
pynvme-console. The extension provides DUT status and cmdlogs in VSCode UL

code --install-extension pynvme-console-2.0.0.vsix

4. Before start vscode, modify .vscode/settings.json with the correct pcie address (bus:device.function listed in Ispci
command) of your DUT device.

lspci
01:00.0 Non-Volatile memory controller: Lite-On Technology Corporation Device.
2300 (rev 01)

5. Then in pynvme folder, we can start vscode to edit, debug and run scripts:

make setup; code . # make sure to enable SPDK nvme driver before starting vscode

6. Users can add their own script files under scripts directory. Import following packages in new test script files.

import pytest
import logging
import nvme as d # import pynvme's python package

Now, we can edit, debug and run test scripts in VSCode! It time to learn more pynvme features and build your own
tests.

4.2. Setup 10

https://code.visualstudio.com/

CHAPTER
FIVE

FEATURES

In order to fully test NVMe devices for functionality, performance and even endurance, pynvme supports many features
about NVMe controller, namespace, as well as PCle and otheir essential parts in the system.

5.1 PCle

NVMe devices are firstly PCle devices, so we need to management the PCle resources. Pynvme can access NVMe
device’s PCI memory space and configuration space, including all capabilities.

pcie = d.Pcie('3d:00.0")

hex(pcie[0:4]) # Byte 0/1/2/3

pm_offset = pcie.cap_offset(l) # find Power Management Capability
pcie.reset()

pcie.aspm = 2 # set ASPM control to enable L1 only
pcie.power_state = 3 # set PCI PM power state to D3hot

Actually, pynvme can also test non-NVMe PCle devices.

5.2 Buffer

In order to transfer data with NVMe devices, users need to allocate and provide the Buffer to IO commands. In this
example, it allocates a 512-byte buffer, and get identify data of the controller in this buffer. We can also give a name to
the buffer.

buf = d.Buffer(512, "part of identify data")

nvme . identify(buf) .waitdone()

now, the buf contains the identify data

print (buf[0:4])

del buf # delete the ‘Buffer' after the commands complete.

11

pynvme, Release 2.3.2

5.2.1 data pattern

Users can identify the data pattern of the Buffer. Pynvme supports following different data patterns by argument pvalue
and ptype.

data pattern ptype pvalue
0

all0 0

all 1 0 1

repeated dwords | 32 32-bit data

random data OxBEEF | compression percentage rate

Users can also specify argument pvalue and ptype in Namespace.ioworker() in the same manner.

The first 8-byte and the last 8-byte of each LBA are not filled by the data pattern. The first 8-byte is the LBA address,
and the last 8-byte is a token which changes on every LBA written.

5.3 Controller

PCle Port

PCI Function 0
NVM Express Controller

To access the NVMe device, scripts have to create Pcie object first, and then create the Controller object from this Pcie
object. It is required to close Pcie object when it is not used. For example:

import nvme as d

pcie = d.Pcie('01:00.0")
nvme® = d.Controller(pcie)
pcie.close()

It uses Bus:Device:Function address to specify a PCle DUT. Then, We can access NVMe registers and send admin
commands to the NVMe device.

csts = nvme®[0xlc] # CSTS register, e.g.: '0x1'
nvme®.setfeatures(0x7, cdwll=(15<<16)+15).waitdone()

5.3. Controller 12

./pic/controller.png

pynvme, Release 2.3.2

5.3.1 NVMe Initialization

When creating controller object, pynvme implements a default initialization process defined in NVMe specification
7.6.1 (v1.4). However, scripts can define its own initialization function, which has one parameter Controller. Here is
an example:

def test_init_nvme_customerized(pcie):
def nvme_init(nvme®):
nvme®[0x14] = O
while not (nvme®[0x1c]&0x1) == 0: pass
nvme®.init_adming()
nvme®[0x14] = 0x00460000
nvme®[0x14] = 0x00460001
while not (nvme®[0x1c]&0x1) == 1: pass
nvme®.identify(d.Buffer(4096)) .waitdone()
nvme®.init_ns()
nvme®.setfeatures(0x7, cdwll=0x00ff00ff).waitdone()
nvme®.getfeatures(0x7) .waitdone ()
aerl = nvme0®.id_data(259)+1
for i in range(aerl):
nvme0.aer()

nvme® = d.Controller(pcie, nvme_init_func=nvme_init)

5.3.2 Admin Commands

We set the feature number of queues (07h) above, and now we try to get the configuration data back with admin
command Controller.getfeatures().

nvme®.getfeatures(7)

Pynvme sends the commands asynchronously, and so we can sync and wait for the commands completion by API
Controller.waitdone().

nvme0®.waitdone (1)

Also, Controller.waitdone() returns dword0 of the latest completion data structure. So, we can get the feature data in
one line:

assert (15<<16)+15 == nvme®.getfeatures(0x7) .waitdone()

Pynvme supports all mandatory admin commands defined in the NVMe spec, as well as most of the optional admin
commands.

5.3. Controller 13

pynvme, Release 2.3.2

5.3.3 Command Callback

Scripts can specify one callback function for every command call. After the command completes, pynvme calls the
specified callback function. Here is an example:

def getfeatures_cbl(cpl):
logging.info(cpl)
nvme®.getfeatures(7, cb=getfeatures_cbl).waitdone()

def getfeatures_cb2(cdw®, statusl):
logging.info(statusl)
nvme®.getfeatures(7, cb=getfeatures_cb2).waitdone()

Pynvme provides two forms of callback function. 1. single parameters: cpl. Pynvme shall pass the whole 16-byte
completion data structure to the single parameter callback funciton. This is recommended form. 2. two parameters:
cdw0 and statusl. Pynvme shall pass the dword0 and higher 16-bit of dword3 of Completion Queue Entry to the two-
parameter callback function. statusl is a 16-bit integer, which includes both Phase Tag and Status Field. This is the
obsoleted form for back-compatibility only.

5.3.4 Identify Data

Here is an usual way to get controller’s identify data:

buf = d.Buffer(4096, 'controller identify data')
nvme®.identify(buf, 0, 1).waitdone()
logging.info("model number: %s" % buf[24:63, 24])

Scripts shall call Controller.waitdone() to make sure the buf is filled by the NVMe device with identify data. Moving
one step forward, because identify data is so frequently used, pynvme provides another API Controller.id_data() to get
a field of the controller’s identify data more easily:

logging.info("model number: %s" % nvme®.id_data(63, 24, str))
logging.info("vid: 0x%x" % nvme®.id_data(l, 0))

It retrieves bytes from 24 to 63, and interpret them as a str object. If the third argument is omitted, they are interpreted
as an int. Users can refer to NVMe specification to get the fields of the data.

5.3.5 Generic Commands

Pynvme provides API for all mandatory admin commands and most of the optional admin commands listed in
the NVMe specification. However, pynvme also provides the API to send the generic admin commands, Con-
troller.send_cmd(). This API can be used for: 1. pynvme un-supported admin commands, 2. Vendor Specific admin
commands 3. illegal Admin Commands

nvme®.send_cmd (0x£f) .waitdone()

def getfeatures_cb_2(cdw®, statusl):
logging.info(statusl)
nvme0®.send_cmd(0xa, nsid=1, cdwl®=7, cb=getfeatures_cb_2).waitdone()

5.3. Controller 14

pynvme, Release 2.3.2

5.3.6 Utility Functions

Besides admin commands, class Controller also provides some utility functions, such as Controller.reset() and Con-
troller.downfw(). Please refer to the last chapter for the full list of APIs.

nvme0® . downfw('path/to/firmware_image_file')
nvme®.reset()

Please note that, these utility functions are not NVMe admin commands, so we do not need to reap them by Con-
troller.waitdone().

5.3.7 Timeout

The timeout duration is configurable, and the default time is 10 seconds. Users can change the timeout setting for those
expected long-time consuming commands.

nvme®. timeout=30000 # the unit is milli-second
nvme®. format () .waitdone() # format may take long time
nvme0 . timeout=10000 # recover to usual timeout configuration

When a command timeout happens, pynvme notifies user scripts in two ways. First, pynvme will throw a timeout
warning. Second, pynvme completes (not abort) the command by itself with an all-1 completion dwords returned.

5.3.8 Asynchronous Event Request

AER is a special NVMe admin command. Itis not applicable to timeout setting. In default NVMe initialization process,
pynvme sends only one AER command for those unexpected AER events during the test. However, scripts can replace
this default initializaiton process with which sends more AER commands or none. When one AER is completed, a
warning is raised. Pynvme driver internally calls waitdone to reap this AER’s CQE, and send one more AER command.
Scripts can also give callback functions for AER commands as the usual commands.

Here is an example of AER with sanitize operations.

def test_aer_with_multiple_sanitize(nvme®, nvme®nl, buf): #L8
if nvme®.id_data(331, 328) == 0: #L9
pytest.skip("sanitize operation is not supported") #LI10

logging.info("supported sanitize operation: %d" % nvme®.id_data(331, 328))

for i in range(3):
nvme0®.sanitize() .waitdone() #L13

check sanitize status in log page
with pytest.warns(UserWarning, match="AER notification is triggered"):
nvme0®.getlogpage(0x81, buf, 20).waitdone() #L17
while buf.data(3, 2) & 0x7 != 1: #L18
time.sleep(1)
nvme®.getlogpage(0x81, buf, 20).waitdone() #L20
progress = buf.data(l, 0)*100//0xffff
logging.info("%d%%" % progress)

AER completion is triggered when sanitize operation is finished. We can find the UserWarning for the AER notification
in the test log below. The first AER command is sent by pynvme initialization process, while the remaining AER
commands are sent by pynvme driver internally.

5.3. Controller 15

pynvme, Release 2.3.2

cmd: sudo python3 -B -m pytest --color=yes --pciaddr=3d:00.0 'scripts/test_examples.
—py::test_aer_with_multiple_sanitize'

test session starts
platform linux -- Python 3.8.3, pytest-5.4.2, py-1.8.1, pluggy-0.13.1
rootdir: /home/cranechu/pynvme, inifile: pytest.ini

plugins: cov-2.9.0

collected 1 item

scripts/test_examples.py::test_aer_with multiple_sanitize
——————————————————————————————————— live log setup -—-——-——----——————— e~
[2020-06-07 22:57:09.934] INFO script(65): setup random seed: 0xb56blbda
——————————————————————————————————— live log call -—--——----mmmmmm
[2020-06-07 22:57:10.334] INFO test_aer_with_multiple_sanitize(580): supported sanitize.
—,operation: 2

[2020-06-07 22:57:13.139] INFO test_aer_with_multiple_sanitize(592): 10%

[2020-06-07 22:57:14.140] WARNING test_aer_with_multiple_sanitize(590): AER triggered,.
—dword®: 0x810106, statusl: Ox1

[2020-06-07 22:57:14.140] INFO test_aer_with_multiple_sanitize(592): 100%

[2020-06-07 22:57:16.967] INFO test_aer_with_multiple_sanitize(592): 10%

[2020-06-07 22:57:17.968] WARNING test_aer_with_multiple_sanitize(590): AER triggered,..
—dword®: 0x810106, statusl: Ox1

[2020-06-07 22:57:17.969] INFO test_aer_with multiple_sanitize(592): 100%

[2020-06-07 22:57:20.777] INFO test_aer_with_multiple_sanitize(592): 10%

[2020-06-07 22:57:21.779] WARNING test_aer_with multiple_sanitize(590): AER triggered,..
—.dword®: 0x810106, statusl: Oxl

[2020-06-07 22:57:21.780] INFO test_aer_with multiple_sanitize(592): 100%

PASSED [100%]
————————————————————————————————— live log teardown -----------————————
[2020-06-07 22:57:21.782] INFO script(67): test duration: 11.848 sec

1 passed in 12.30s

5.3.9 Multiple Controllers

Users can create as many controllers as they have, even mixed PCle devices with NVMe over TCP targets in the test.

nvme® = d.Controller(b'01:00.0")
nvmel d.Controller(b'03:00.0")
nvme2 = d.Controller(b'10.24.48.17")
nvme3 = d.Controller(b'127.0.0.1:4420")
for n in (nvme®, nvmel, nvme2, nvme3):
logging.info("model number: %s" % n.id_data(63, 24, str))

One script can be executed multiple times with different NVMe drives’ BDF address in the command line.

laptop:~ sudo python3 -m pytest scripts/cookbook.py::test_verify_partial_namespace -s --
—pciaddr=01:00.0
laptop:~ sudo python3 -m pytest scripts/cookbook.py::test_verify_partial_namespace -s --
—pciaddr=02:00.0

5.3. Controller 16

pynvme, Release 2.3.2

5.4 Qpair

In pynvme, we combine a Submission Queue and a Completion Queue as a Qpair. The Admin Qpair is created within
the Controller object implicitly. However, we need to create IO Opair explicitly for IO commands. We can specify the
queue depth for IO Qpairs. Scripts can delete both SQ and CQ by calling QOpair.delete().

gpair = d.Qpair(nvme®, 10)
gpair.delete()

Similar to Admin Commands, we use Qpair.waitdone() to wait IO commands complete.

5.4.1 Interrupt

Pynvme creates the IO Completion Queues with interrupt (e.g. MSIx or MSI) enabled. However, pynvme does not
check the interrupt signals on IO Qpairs. We can check interrupt signals through a set of API Opair.msix_*() in the
scripts. Here is an example.

q = d.Qpair(nvme®, 8)

g.msix_clear()

assert not g.msix_isset()

nvme®nl.read(q, buf, 0, 1) # nvmeOnl is the Namespace of nvme0®
time.sleep(1)

assert q.msix_isset()

g.waitdone()

Interrupt is supported only for testing. Pynvme still reaps completions by polling, without checking the interrupt signals.
Users can check the interrupt signal in test scripts when they need to test this function of the DUT. The interrupt of
Admin Qpair of the Controller is handled in a different way by pynvme: pynvme does check the interrupt signals in each
time of Controller.waitdone() function call. Only when the interrupt of Admin Commands is presented, pynvme would
reap Admin Commands. Interrupts associated with the Admin Completion Queue cannot be delayed by coalescing
(specified in 7.5 Interrupts, NVMe specification 1.4).

5.4.2 Cmdlog

Pynvme traces recent thousands of commands in the cmdlog, as well as the completion dwords, for each Qpair. API
Opair.cmdlog() lists the cmdlog of the Qpair. With pynvme’s VSCode plugin, users can also get the cmdlog in IDE’s
GUI windows.

5.4.3 Notice

The Qpair object is created with a Controller object. So, users create the Qpair after the Controller. On the other side,
users should free Qpair before the Controller. We recommend to use pytest and its fixture nvme0. It always creates
controller before qpairs, and deletes controller after any gpairs.

Qpair objects may be reclaimed by Python Garbage Collection, when they are not used in the script. So, gpairs would
be deleted and qid would be reused. If you really want to keep gpairs alive, remember to keep their references, for
example, in a list:

5.4. Qpair 17

pynvme, Release 2.3.2

def test_create_many_gpairs(nvme0):
glist = [] # container to reference all gpairs
for i in range(16):
gqlist.append(d.Qpair(nvme®, 8))
del qlist # delete all 16 gpairs

5.5 Namespace

We can create a Namespace and attach it to a Controller. It is required to close Namespace object when it is not used.

nvme®Onl = d.Namespace(nvme®, nsid=1)
nvme®nl.close()

PCle Port

PCI Function 0
NVM Express Controller

For most Client NVMe SSD, we only need to use the fixture nvmeOn1 to declare the single namespace. Pynvme also
supports callback functions of IO commands.

def write_cb(cdw®, statusl):
nvmeOnl.read(qpair, read_buf, 0, 1)
nvme®nl.write(gpair, data_buf, 0, 1, cb=write_cb).waitdone(2)

In the above example, the waitdone() function-call reaps two commands. One is the write command, and the other
is the read command which was sent in the write command’s callback function. The function-call waitdone() polls
commands Completion Queue, and the callback functions are called within this waitdone() function.

def test_invalid_io_command_O0xff(nvme®nl):
logging.info("controller® namespace size: %d" % nvme®nl.id_data(7, 0))

As you see, we use APl Namespace.id_data() to get a field of namespace identify data.

5.5. Namespace 18

./pic/controller.png

pynvme, Release 2.3.2

5.5.1 10 Commands

With Namespace, Qpair, and Buffer, we can send IO commands to NVMe devices.

def test_write_lba_0(nvme®, nvme®nl):
buf = d.Buffer(512)
gpair = d.Qpair(nvme®, 16)
nvme®nl.write(qpair, buf, 0).waitdone()

Pynvme inserts LBA and calculates CRC data for each LBA to write. On the other side, pynvme checks LBA and CRC
data for each LBA to read. It verifies the data integrity on the fly with ultra-low CPU cost.

5.5.2 Trim

Dataset Management (e.g. deallocate, or trim) is another commonly used IO command. It needs a prepared data buffer
to specify LBA ranges to trim. Users can use API Buffer.set_dsm_range() for that.

nvme® = d.Controller(b'01:00.0")

buf = d.Buffer(4096)

gpair = d.Qpair(nvme®, 8)

nvme®Onl = d.Namespace(nvme®)
buf.set_dsm_range(0, 0, 8)
buf.set_dsm_range(l, 8, 64)
nvmeOnl.dsm(gpair, buf, 2).waitdone()

5.5.3 Generic Commands

We can also send any IO commands through generic commands API Namespace.send_cmd():

nvme®nl.send_cmd(5|(1<<8), q, b, 1, 8, 0, 0)
nvme®nl.send_cmd(1|(1<<9), g, b, 1, 8, 0, 0)
g.waitdone(2)

It is actually a fused operation of compare and write in the above script.

5.5.4 Data Verify

We mentioned earlier that pynvme verifies data integrity on the fly of data IO. However, the controller is not responsible
for checking the LBA of a Read or Write command to ensure any type of ordering between commands. See explanation
from NVMe specification:

For all commands which are not part of a fused operation (refer to section 4.12), or for which the write
size is greater than AWUN, each command is processed as an independent entity without reference to
other commands submitted to the same I/O Submission Queue or to commands submitted to other I/O
Submission Queues. Specifically, the controller is not responsible for checking the LBA of a Read or
Write command to ensure any type of ordering between commands. For example, if a Read is submitted
for LBA x and there is a Write also submitted for LBA X, there is no guarantee of the order of completion for
those commands (the Read may finish first or the Write may finish first). If there are ordering requirements
between these commands, host software or the associated application is required to enforce that ordering
above the level of the controller.

5.5. Namespace 19

pynvme, Release 2.3.2

For example, when two IOWorkers write the same LBA simultaneously, the order of these writes is not defined. Sim-
ilarly, in a read/write mixed IOWorker, when both read and write IO happen on the same LBA, their order is also not
defined. So, it is impossible for host to determine the data content of the read.

To avoid data conflict, we can start IOWorkers one after another. Otherwise, when we have to start multiple IOWorkers
in parallel, we can separate them to different LBA regions. Pynvme maintains a lock for each LBA, so within a single
ioworker, pynvme can detect and resolve the LBA conflication mention above, and thus make the data verification
possible and reliable in one ioworker. For those conflict-free scripts, we can enable the data verify by the fixture verify.

def test_ioworker_write_read_verify(nvme®nl, verify):
assert verify

nvmeO®nl.ioworker(io_size=8, lba_align=8, lba_random=False,
region_start=0, region_end=100000
read_percentage=0, time=2).start().close()

nvme®Onl.ioworker(io_size=8, lba_align=8, lba_random=False,
region_start=0, region_end=100000
read_percentage=100, time=2).start().close()

Another consideration on data verify is the memory space. During Namespace initialization, only if pynvme can
allocate enough memory to hold the CRC data for each LBA, the data verify feature is enabled on this Namespace.
Otherwise, the data verify feature cannot be enabled. Take a 512GB namespace for an example, it needs about 4GB
memory space for CRC data. However, scripts can specify a limited scope to enable verify function with limited DRAM
usage.

def test_verify_partial_namespace(nvme0):
region_end=1024%1024*1024//512 # 1GB space
nvme®Onl = d.Namespace(nvme®, 1, region_end)
assert True == nvmeOnl.verify_enable(True)

nvme®Onl.ioworker(io_size=8,
1lba_random=True,
region_end=region_end,
read_percentage=50,
time=30).start() .close()

5.6 IOWorker

It is inconvenient and expensive to send each IO command in Python scripts. Pynvme provides the low-cost high-
performance IOWorker to send IOs in separated processes. [OWorkers make full use of multi-core CPU to improve IO
test performance and stress. Scripts create the IOWorker object by API Namespace.ioworker(), and start it. Then scripts
can do anything else, and finally close it to wait the IOWorker process finish and get its result data. Each IOWorker
occupies one Qpair in runtime. Here is an IOWorker randomly writing 4K data for 2 seconds.

r = nvmeOnl.ioworker(io_size=8, lba_align=8, lba_random=True,
read_percentage=0, time=2).start().close()
logging.info(r)

5.6. IOWorker 20

pynvme, Release 2.3.2

5.6.1 Return Data

The IOWorker result data includes these information:

item type | explanation

io_count_read int total read IO in the IOWorker

io_count_nonread int total write and other non-read IO in the IOWorker
io_count_write int total write IO in the IOWorker

mseconds int IOWorker duration in milli-seconds

cpu_usage int the percentage of CPU time used by ioworker
latency_max_us int maximum latency in the IOWorker, unit is micro-seconds
latency_average_us | int average latency in the IOWorker, unit is micro-seconds
error int error code of the IOWorker

Here are ioworker’s error code:
¢ 0: no erro
e -1: generic error
e -2: io_size is larger than MDTS
e -3: io timeout

e -4: joworker timeout

5.6.2 Output Parameters

To get more result of the ioworkers, we should provide output parameters.

* output_io_per_second: when an empty list is provided to output_io_per_second, ioworker will fill the io count
of every seconds during the whole test.

 output_percentile_latency: when a dict, whose keys are a series of percentiles, is provided to out-
put_percentile_latency, ioworker will fill the latency of these percentiles as the values of the dict.

* output_cmdlog_list: when a list is provided, ioworker fills the last completed commands information.

With these detail output data, we can test IOPS consistency, latency QoS, and etc. Here is an example:

def test_ioworker_output_io_per_latency(nvme®Onl, nvme®):
output_io_per_second = []
output_percentile_latency = dict.fromkeys([10, 50, 90, 99, 99.9, 99.99, 99.999, 99.
—99999])
r = nvmeOnl.ioworker(io_size=8, lba_align=8,
lba_random=False, qdepth=32,
read_percentage=0, time=10,
output_io_per_second=output_io_per_second,
output_percentile_latency=output_percentile_latency).start().
—close()
assert len(output_io_per_second) == 10
assert output_percentile_latency[99.999] < output_percentile_latency[99.99999]

5.6. IOWorker 21

pynvme, Release 2.3.2

5.6.3 Concurrent

We can simultaneously start as many ioworkers as the IO Qpairs NVMe device provides.

with nvmeO®nl.ioworker(lba_start=0, io_size=8, lba_align=64,

1ba_random=False,
region_start=0, region_end=1000,
read_percentage=0,

iops=0, io_count=1000, time=0,
gprio=0, qdepth=9), \

nvmeO®nl.ioworker(lba_start=1000, io_size=8, lba_align=64,

1ba_random=False,
region_start=0, region_end=1000,
read_percentage=0,

iops=0, io_count=1000, time=0,
gprio=0, gdepth=9), \

nvmeO®nl.ioworker (lba_start=8000, io_size=8, lba_align=64,

1ba_random=False,
region_start=0, region_end=1000,
read_percentage=0,

iops=0, io_count=1000, time=0,
gprio=0, gdepth=9), \

nvmeO®nl.ioworker(lba_start=8000, io_size=8, lba_align=64,

pass

1ba_random=False,
region_start=0, region_end=1000,
read_percentage=0,

iops=0, io_count=10, time=0,
gprio=0, gdepth=9):

We can even start [IOWorkers on different Namespaces in one script:

def test_two_namespace_ioworkers(nvme®nl, nvme®):
nvmel = d.Controller(b'03:00.0")
nvmelnl = d.Namespace(nvmel)
with nvmeOnl.ioworker(io_size=8, lba_align=16,

lba_random=True, gdepth=16,
read_percentage=0, time=100), \

nvmelnl.ioworker(io_size=8, lba_align=16,

lba_random=True, qdepth=16,
read_percentage=0, time=100):

Scripts can send NVMe commands accompanied with IOWorkers. In this example, the script monitors SMART tem-
perature value while writing NVMe device in an IOWorker.

def test_ioworker_with_temperature(nvme®, nvmeOnl):
smart_log = d.Buffer(512, "smart log")
with nvmeOnl.ioworker(io_size=8, lba_align=16,

lba_random=True, qdepth=16,
read_percentage=0, time=30):

for i in range(40):
nvme0®.getlogpage(0x02, smart_log, 512).waitdone()
ktemp = smart_log.data(2, 1)

(continues on next page)

5.6. IOWorker

22

pynvme, Release 2.3.2

(continued from previous page)

logging.info("temperature: %0.2f degreeC" % k2c(ktemp))
time.sleep(1)

Scripts can also make a reset or power operation when iowrokers are active. But before these kinds of operations,
scripts need to wait for seconds before ioworkers are started. In these way, we can inject abnormal events into the IO
workload like dirty power cycle.

def test_power_cycle_dirty(nvme®nl, subsystem):
with nvmeOnl.ioworker(io_size=256, lba_align=256,
lba_random=False, qdepth=64,
read_percentage=0, time=30):
time.sleep(10)
subsystem.power_cycle()

5.6.4 Performance

The performance of IOWorker is super high and super consistent because pynvme is an user-space driver. We can use
it extensively in performance tests and stress tests. For example, we can get the 4K read IOPS in the following script.

@pytest.mark.parametrize("qcount", [1, 2, 4, 8, 16])
def test_ioworker_iops_multiple_queue(nvme®nl, qgcount):
1=1]
io_total = 0
for i in range(qcount):
a = nvmeOnl.ioworker(io_size=8, lba_align=8,
region_start=0, region_end=256*1024%8, # 1GB space
lba_random=False, qdepth=16,
read_percentage=100, time=10).start()
1.append(a)

for a in 1:
r = a.close()

io_total += (r.io_count_read+r.io_count_nonread)

logging.info("Q %d IOPS: %dK" % (qcount, io_total/10000))

5.6.5 Input Parameters

IOWorker can also accurately control the IO pressure by the input parameter iops.

def test_ioworker_output_io_per_second(nvme®nl, nvme®):
output_io_per_second = []
nvmeO®nl.ioworker(io_size=8, lba_align=16,
lba_random=True, qdepth=16,
read_percentage=0, time=7,
iops=1234,
output_io_per_second=output_io_per_second).start().close()
logging.info(output_io_per_second)
assert len(output_io_per_second) ==
assert output_io_per_second[0] != 0

(continues on next page)

5.6. IOWorker 23

pynvme, Release 2.3.2

(continued from previous page)

assert output_io_per_second[-1] >= 1233
assert output_io_per_second[-1] <= 1235

The result of the [OWorker shows that it tests for 7 seconds, and sends 1234 IOs in each second. In this way, we can
measure the latency against different IOPS pressure.

Scripts can create an ioworker up to 24 hours. We can also specify different data pattern in the [OWorker with arguments
pvalue and ptype, which are the same definition as that in class Buffer.

Scripts can send different size IO in an ioworker through parameter io_size, which accepts different types of input: int,
range, list, and dict.

type | explanation example
int fixed io size 1, send all io with size of 512 Byte.
range | arange of different io size range(1, 8), send io size of 512, 1024, 1536, 2048, 2560, 3072, and
3584.
list a list of different io size [8, 16], send io size of 4096, and 8192.
dict identify io size, as well as thera- | {8: 2, 16: 1}, send io size of 4096 and 8192, and their IO count ratio is
tio 2:1.

We can limit ioworker sending IO in a region specified by parameter region_start and region_end. Furthermore, we
can do a further fine granularity control of IO distribution across the LBA space by parameter distribution. It evenly
divides LBA space into 100 regions, and we specify how to identify 10000 IOs in these 100 regions.

Here is an example to display how ioworker implements JEDEC workload by these parameters:

def test_ioworker_jedec_workload(nvme®nl):
distribute 10000 IOs to 100 regions
distribution = [1000]%5 + [200]*15 + [25]%80

specify different I0 size and their ratio of io count
iosz_distribution = {1: 4,

2: 1,
3: 1,
4: 1,
5: 1,
6: 1,
7: 1,
8: 67,
16: 10,
32: 7,
64: 3,
128: 3}

implement JEDEC workload in a single ioworker
nvme®Onl.ioworker(io_size=iosz_distribution,
lba_random=True,
qdepth=32,
distribution = distribution,
read_percentage=0,
ptype=0xbeef, pvalue=100,
time=10).start() .close()

Iba_random is the percentage of random IO, while read_percentage defines the percentage of read 10. op_percentage

5.6. IOWorker 24

pynvme, Release 2.3.2

can specify any IO opcodes as the keys of the dict, and the values are the percentage of that I0. So, we can send any
kind of IO commands in ioworker, like Trim, Write Zeroes, Compare, and even VU commands.

def test_ioworker_op_dict_trim(nvme®nl):
nvmeO®nl.ioworker(io_size=2,
1ba_random=30,
op_percentage={2: 40, 9: 30, 1: 30},
time=2).start().close()

For more details on these input parameters, please refer to the lastest chapter of API documents, we well as the examples
in the file: https://github.com/pynvme/pynvme/blob/master/scripts/test_examples.py

5.7 Miscellaneous

Besides functions described above, pynvme provides more facilities to make your tests more simple and powerful.

5.7.1 Power

Without any addtional equipment, pynvme can power off NVMe devices through S3 power state, and use RTC to wake
it up. We implemented this process in API Subsystem.power_cycle().

subsystem = d.Subsystem(nvme0)
subsystem.power_cycle(1l5) # power off, sleep for 15 seconds, and power on

We can check if the hardware and OS supports S3 power state in the command line:

> sudo cat /sys/power/state
freeze mem disk

> sudo cat /sys/power/mem_sleep
s2idle [deep]

Scripts can send a notification to NVMe device before turn power off, and this is so-called clean power cycle in SSD
testing:

subsystem = d.Subsystem(nvme0)
subsystem. shutdown_notify()
subsystem.power_cycle()

Pynvme also supports third-party hardware power module. Users provides the function of poweron and poweroff when
creating subsystem objects, and pynvme calls them in Subsystem.poweron() and Subsystem.poweroff{().

def test_quarch_defined_poweron_poweroff(nvme®) :
import quarchpy

def quarch_poweron():
logging.info("power off by quarch™)
pwr = quarchpy.quarchDevice("SERIAL:/dev/ttyUSBO")
pwr.sendCommand("run:power up')
pwr.closeConnection()

def quarch_poweroff():
logging.info("power on by quarch™)

(continues on next page)

5.7. Miscellaneous 25

https://github.com/pynvme/pynvme/blob/master/scripts/test_examples.py

pynvme, Release 2.3.2

(continued from previous page)

pwr = quarchpy.quarchDevice("SERIAL:/dev/ttyUSBO")
pwr.sendCommand("signal:all:source 7")

pwr . sendCommand (" run:power down")
pwr.closeConnection()

s = d.Subsystem(nvme®, quarch_poweron, quarch_poweroff)

It is required to call Controller.reset() after Subsystem.power_cycle() and Subssytem.poweron().

5.7.2 Reset

Pynvme provides different ways of reset:

nvme0®.reset() # reset controller by its CC.EN register. We can also reset the NVMe.
—device as a PCIe device:

pcie.reset() # PCIe hot reset
nvme®.reset()

subsystem.reset() # use register NSSR.NSSRC
nvme0®.reset()

It is required to call Controller.reset() after Pcie.reset() and Subsystem.reset().

5.7.3 Random Number

Before every test item, pynvime sets a different random seed to get different serie of random numbers. When user wants
to reproduce the test with the identical random numbers, just manually set the random seed in the beginning of the test
scripts. For example:

def test_ioworker_iosize_inputs(nvme®nl):

reproduce the test with the same random seed, and thus the identical random.,
—numbers generated by host

d.srand(0x58e7£337)

nvme®Onl.ioworker(io_size={1: 2, 8: 8}, time=1).start().close()

5.7.4 Python Space Drive
Based on SPDK, pynvme provides a high performance NVMe driver for product test. However, it lacks of flexibility
to test every details defined in the NVMe Specification. Here are some of the examples:

1. Multiple SQ share one CQ. Pynvme abstracts CQ and SQ as the Qpair.

2. Non-contiguous memory for SQ and/or CQ. Pynvme always allocates contiguous memory when creating Qpairs.

3. Complicated PRP tests. Pynvme creates PRP with some reasonable limitations, but it cannot cover all corner
cases in protocol tests.

In order to cover these considerations, pynvme provides an extension of Python Space Driver (PSD). It is an NVMe
driver implemented in pure Python based on two fundamental pynvme classes:

1. DMA memory allocation abstracted by class Buffer.

5.7. Miscellaneous 26

pynvme, Release 2.3.2

2. PCle configuration and memory space provided by class Pcie.

PSD implements NVMe data structures and operations in the module scripts/psd.py based on Buffer:
1. PRP: alias of Buffer, and the size is the memory page by default.

PRPList: maintain the list of PRP entries, which are physical addresses of Buffer.

I0SQ: create and maintain IO Submission Queue.

I0CQ: create and maintain IO Completion Queue.

wooA »N

SQE: submission queue entry for NVMe commands dwords.
6. CQE: completion queue entry for NVMe completion dwords.

Here is an example:

import psd classes
from psd import I0CQ, IOSQ, PRP, PRPList, SQE, CQE

def test_send_cmd_2sq_lcq(nvme®):
2 SQ share one CQ
cqg = I0CQ(nvme®, 1, 10, PRP())
sql = I0SQ(nvme®, 1, 10, PRP(), cqid=1)
sq2 = I0SQ(nvme®, 2, 16, PRP(), cqid=1)

write lba®, 16K data organized by PRPList

write_cmd = SQE(1, 1) # write to namespace 1
write_cmd.prpl = PRP() # PRP1 is a 4K page

prp_list = PRPList() # PRPList contains 3 pages
prp_list[0] = PRP()

prp_list[1] = PRP()

prp_list[2] PRP()

write_cmd.prp2 = prp_list # PRP2 points to the PRPList
write_cmd[10] = O # starting LBA

write_cmd[12] 31 # LBA count: 32, 16K, 4 pages
write_cmd.cid = 123; # verify cid later

send write commands in both SQ

sql[0] = write_cmd # fill command dwords in SQlI
write_cmd.cid = 567; # verify cid later

sq2[0] = write_cmd # fill command dwords in SQ2

sg2.tail =1 # ring doorbell of SQ2 first
time.sleep(0.1) # delay to ring SQI,

sql.tail =1 # so command in SQ2 should comple first

wait for 2 command completions
while CQE(cq[1]).p == 0: pass

check first cpl

cqge = CQE(cq[0])
assert cqge.sqid ==
assert cqe.sghd == 1
assert cge.cid == 567

check second cpl

(continues on next page)

5.7. Miscellaneous

27

pynvme, Release 2.3.2

(continued from previous page)

cqge = CQE(cq[1D)
assert cqge.sqid ==
assert cqe.sghd ==
assert cge.cid == 123

update cq head doorbell to device
cq.head = 2

delete all queues
sql.delete()
sq2.delete()
cq.delete()

Pynvme opens quite many APIs of low-level resources, so people are free to make innovations with pynvme in user
scripts.

5.7. Miscellaneous 28

20

21

22

23

24

25

26

27

28

29

30

CHAPTER
SIX

EXAMPLES

In this chapter, we will review several typical NVMe test scripts. You can find more example scripts here: https:
/[github.com/pynvme/pynvme/blob/master/scripts/test_examples.py

6.1 Ex1: hello world

import packages
import pytest
import nvme as d

define the test case in a python function
list fixtures used in the parameter list
specify the class type of the fixture, so VSCode can give more docstring online
def test_hello_world(nvme®, nvme®nl: d.Namespace):
create the buffers and fill data for read/write commands
read_buf = d.Buffer(512)
data_buf = d.Buffer(512)
data_buf[10:21] = b'hello world'

create IO Qpair for read/write commands
gpair = d.Qpair(nvme®, 16)

Define the callback function for write command.
The argument *statusl* of the callback is a 16-bit
value, which includes the Phase-bit.
def write_cb(cdw®, statusl):
nvmeOnl.read(gpair, read_buf, 0, 1)

execute the write command with the callback function
nvmeOnl.write(gpair, data_buf, 0, 1, cb=write_cbh)

wait the write command, and the read command in its callback, to be completed
gpair.waitdone(2)

check the data in read buffer
assert read_buf[10:21] == b'hello world'

29

https://github.com/pynvme/pynvme/blob/master/scripts/test_examples.py
https://github.com/pynvme/pynvme/blob/master/scripts/test_examples.py

pynvme, Release 2.3.2

6.2 Ex2: sanitize

import more package for GUI programming
import PySimpleGUI as sg

define another test function, use the default buffer created by the fixture
def test_sanitize(nvme®, nvme®Onl, buf):
check if sanitize is supported by the device
if nvme®.id_data(331, 328) == 0:
pytest.skip('sanitize operation is not supported")

start sanitize operation
logging.info("supported sanitize operation: %d" % nvme®.id_data(331, 328))
nvme0®.sanitize() .waitdone()

polling sanitize status in its log page
nvme0®.getlogpage(0x81, buf, 20).waitdone()
while buf.data(3, 2) & 0x7 != 1: # sanitize is not completed
progress = buf.data(l, 0)*100//0xffff
display the progress of sanitize in a GUI window
sg.OnelLineProgressMeter('sanitize progress', progress, 100,
'progress', orientation='h')
nvme0®.getlogpage(0x81, buf, 20).waitdone()
time.sleep(1)

6.3 Ex3: parameterized tests

create a parameter with a argument list
@pytest.mark.parametrize("qcount"”, [1, 2, 4, 8, 16])
def test_ioworker_iops_multiple_queue(nvme®nl, gcount):
1=1]
io_total = 0

create multiple ioworkers for read performance test
for i in range(qcount):
a = nvmeOnl.ioworker(io_size=8, lba_align=8,
region_start=0, region_end=256*1024%8, # 1GB space
lba_random=False, qdepth=16,
read_percentage=100, time=10).start()
1.append(a)

after all ioworkers complete, calculate the IOPS performance result
for a in 1:

r = a.close()

io_total += (r.io_count_read+r.io_count_nonread)
logging.info("Q %d IOPS: %dK" % (qcount, io_total/10000))

6.2. Ex2: sanitize

30

pynvme, Release 2.3.2

6.4 Ex4: upgrade and reboot the drive

this test function is actually a utility to upgrade SSD firmware
def test_download_firmware(nvme®, subsystem):
open the firmware binary image file
filename = sg.PopupGetFile('select the firmware binary file', 'pynvme')
if filename:
logging.info("To download firmware binary file:

+ filename)

download the firmware image to SSD
nvme0.downfw(filename)

power cycle the SSD to activate the upgraded firmware
subsystem.power_cycle()

reset controller after power cycle
nvme0®.reset()

6.5 Ex5: write drive and monitor temperature

a temperature calculation package
from pytemperature import k2c

def test_ioworker_with_temperature(nvme®, nvme®nl):
smart_log = d.Buffer(512, "smart log")

start the ioworker for sequential writing in secondary process
with nvmeOnl.ioworker(io_size=256, lba_align=256,
lba_random=False, qdepth=16,
read_percentage=0, time=30):
meanwhile, monitor SMART temperature in primary process
for i in range(40):
nvme0.getlogpage(0x02, smart_log, 512).waitdone()

the K temperture from SMART log page

ktemp = smart_log.data(2, 1)

logging.info("temperature: %0.2f degreeC" % k2c(ktemp))
time.sleep(1)

6.6 Ex6: multiple ioworkers on different namespaces and

controllers

def test_multiple_controllers_and_namespaces():
address list of the devices to test
addr_list = ['3a:00.0', '10.24.48.17"']

create the list of controllers and namespaces
nvme_list = [d.Controller(d.Pcie(a)) for a in addr_list]
ns_list = [d.Namespace(n) for n in nvme_list]

(continues on next page)

6.4. Ex4: upgrade and reboot the drive

31

20

21

22

23

24

25

26

27

pynvme, Release 2.3.2

(continued from previous page)

operations on multiple controllers
for nvme in nvme_list:
logging.info("device: %s" % nvme.id_data(63, 24, str))

start multiple ioworkers
ioworkers = {}
for ns in ns_list:
a = ns.ioworker(io_size=8, lba_align=8,
region_start=0, region_end=256*1024%8, # 1GB space
lba_random=False, qgdepth=16,
read_percentage=100, time=10).start()
ioworkers[ns] = a

test results of different namespaces
for ns in ioworkers:
r = ioworkers[ns].close()
io_total = (r.io_count_read+r.io_count_nonread)
logging.info("capacity: %u, IOPS: %.3fK" %
(ns.id_data(7, 0), io_total/10000))

6.7 Ex7: format and fused operations

fused operation is not directly supported by pynvme APIs
def test_fused_operations(nvme®, nvme®nl):

format the namespace to 4096 block size. Use Namespace.format(), instead
of Controller.format(), for pynvme to update namespace data in the driver.
nvmeO®nl. format (4096)

create gpair and buffer for I0 commands
q d.Qpair(nvme®, 10)
b d.Buffer()

separate compare and write commands
nvmeOnl.write(q, b, 8).waitdone()
nvmeO®nl.compare(q, b, 8).waitdone()

implement fused compare and write operations with generic commands
Controller.send_cmd() sends admin commands,

and Namespace.send_cmd() here sends I0 commands.
nvme®nl.send_cmd(5| (1<<8), g, b, 1, 8, 0, 0)
nvme®nl.send_cmd(1|(1<<9), g, b, 1, 8, 0, 0)

g.waitdone(2)

6.7. Ex7: format and fused operations 32

CHAPTER
SEVEN

DEVELOPMENT

You are always warmly welcomed to join us to develop pynvme, as well as the test scripts, together! Here are some
fundamental information for pynvme development.

7.1 Files

Pynvme makes use a bunch of 3-rd party tools. Here is a collection of key source code and configuration files and

directories.
files notes
spdk pynvme is built on SPDK
driver_wrap.pyx pynvme uses cython to bind python and C. All python classes are defined here.
cdriver.pxd interface between python and C
driver.h interface of C
driver.c the core part of pynvme, which extends SPDK for test purpose
setup.py cython configuration for compile
Makefile it is a part of SPDK makefiles

driver_test.py

pytest cases for pynvme test. Users can develop more test cases for their NVMe de-
vices.

conftest.py predefined pytest fixtures. Find more details below.
pytest.ini pytest runtime configuration

install.sh build pynvme for the first time

.vscode vscode configurations

pynvme-console- pynvme plugin of VSCode

1.x.x.vsix

requirements.txt

python packages required by pynvme

.gitlab-ci.yml

pynvme’s CI configuration file for gitlab.com

7.2 Repository

Our official repository is at: https://github.com/pynvme/pynvme. We built pynvme based on SPDK/DPDK. In order
to extend them with test-purpose features, we forked SPDK and DPDK respectively at:

* SPDK: https://github.com/cranechu/spdk

* DPDK: https://github.com/cranechu/dpdk

The pynvme modified code is in the branch of pynvme_1.x. We will regularly rebase pynvme modifications to the latest

SPDK/DPDK stable release.

33

https://github.com/pynvme/pynvme
https://github.com/cranechu/spdk
https://github.com/cranechu/dpdk

pynvme, Release 2.3.2

7.3 Cl

We defined 3 different tests for pynvme in GitLab’s CI:

1. checkin test: it is executed automatically when any new commit pushed onto master or any other branches. It
should be finished in 3 minutes.

2. stress test: it is executed automatically in every weekend. Furthermore, before we merge any code onto master,
we should also start and pass this stress test. We can start it here: https://gitlab.com/cranechu/pynvme/pipeline_
schedules. It should be finished in 3 hours.

3. manual test: we can start any test scripts via web: https://gitlab.com/cranechu/pynvme/pipelines/new. For ex-
ample, when we need to run performance tests, we can set variable key to “SCRIPT_PATH”, and set its varaiable
value to “scripts/performance”. Then, CI starts the tests as below:

make test TESTS="scripts/performance"

We can find CI test status, logs and reports here: https://gitlab.com/cranechu/pynvme/pipelines.

The CI runner is setup on Fedora 30 Server.

7.4 Debug

1. assert: We leave a lot of assert in SPDK and pynvme code, and they are all enabled in the compile time by default.

2. log: logs include driver’s log and script’s log. All logs are captured/hidden by pytest in default. You can find
them in file fest.log even in the run time of tests. Users can change log levels for driver and scripts.

1. driver: spdk_log_set_print_level in driver.c, for SPDK related logs. Set it to SPDK_LOG_DEBUG for
more debug output, while it makes very heavy overhead.

2. scripts: log_cli_level in pytest.ini, for python/pytest scripts.

3. gdb: when driver crashes or any unexpected behave observed, we can collect debug information through gdb.
1. core dump: sudo coredumpctl debug
2. generate core dump in dead loop: CTRL-\

3. test within gdb (e.g. realgud with Emacs)

sudo gdb --args python3 -m pytest --color=yes --pciaddr=01:00.0 "driver_test.
—py::test_create_device"

If you meet any problem, please report it to Issues with the test.log file uploaded.

7.5 Socket

Pynvme replaced Kernel’s NVMe driver, so usual user space utilities (e.g. nvme-cli, iostat, etc) are not aware of pynvme
and its tests. Pynvme provides an unix socket to solve these problems. Scripts and third-party tools can use this socket
to get the current status of the testing device. Currently, we support 3 commands of jsonrpc call:

1. list_all_qgpair: get the status of all created gpair, like its qid and current outstanding IO count.
2. get_iostat: get current IO performance of the testing device.

3. get_cmdlog: get the recent commands and completions in the specified gpair.

7.3. ClI 34

https://gitlab.com/cranechu/pynvme/pipeline_schedules
https://gitlab.com/cranechu/pynvme/pipeline_schedules
https://gitlab.com/cranechu/pynvme/pipelines/new
https://gitlab.com/cranechu/pynvme/pipelines
https://github.com/pynvme/pynvme/issues

pynvme, Release 2.3.2

Here is an example of scripts access this socket in Python, but it can be accessed by any other tools (e.g. typescript
which is used by pynvme’s VSCode plugin).

def test_jsonrpc_list_gpairs(pciaddr): #L1I
import json
import socket #L3

create the jsonrpc client
sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
sock.connect('/var/tmp/pynvme.sock') #L7

def jsonrpc_call(sock, method, params=[]): #L9
create and send the command
req = {}
req['id'] = 1234567890
req['jsonrpc'] = '2.0'
req['method'] = method
req['params'] = params
sock.sendall(json.dumps(req) .encode('ascii'))

receive the result

resp = json.loads(sock.recv(4096).decode('ascii'))
assert resp['id'] == 1234567890

assert resp['jsonrpc'] == '2.0'

return resp['result']

create controller and admin queue
nvme® = d.Controller(d.Pcie(pciaddr)) #L25

result = jsonrpc_call(sock, 'list_all_qgpair') #L27
assert len(result) == 1 #L28

7.5. Socket 35

CHAPTER
EIGHT

NVME

8.1 Buffer

Buffer()

Buffer allocates memory in DPDK, so we can get its physical address for DMA. Data in buffer is clear to O in initial-
ization.

Parameters
* size (int): the size (in bytes) of the buffer. Default: 4096
e name (str): the name of the buffer. Default: ‘buffer’
 pvalue (int): data pattern value. Default: 0
* ptype (int): data pattern type. Default: O

data patterns

|ptype | pvalue |
R | |
0	® for all-zero data, 1 for all-one data
32	32-bit value of the repeated data pattern
0xbeef	random data compressed rate (0: all 0; 100: fully random)
others	not supported
Examples

>>> b = Buffer(1024, 'example')
>>> b[0] = 0x5a

>>> b[1:3] = [1, 2]

>>> b[4:] = [10, 11, 12, 13]
>>> b.dump(16)

example
00000000 5a 01 02 00 ®a Ob Oc 0d 00 00 00 00 00 00 00 00 Z e
>>> b[:8:2]

b'Z\x02\n\x0c"'

>>> b.data(2) == 2

True

>>> b[2] ==

True

>>> b.data(2, 0) == 0x02015a

(continues on next page)

36

pynvme, Release 2.3.2

(continued from previous page)

True

>>> len(b)

1024

>>> b

<buffer name: example>

>>> b[8:] = b'xyc'

example

00000000 5a 01 02 00 0a Ob Oc 0d 78 79 63 00 00 00 00 00 Z....... XYChunnw
>>> b.set_dsm_range(l, 0x1234567887654321, Oxabcdefl2)

>>> b.dump(64)

buffer

00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000010 00 00 00 00 12 ef cd ab 21 43 65 87 78 56 34 12 1Ce.xV4.
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 60 00 00 00 60 00 00 00 00

8.1.1 data

Buffer.data(byte_end, byte_begin, type)

get field in the buffer. Little endian for integers.
Parameters
* byte_end (int): the end byte number of this field, which is specified in NVMe spec. Included.

* byte_begin (int): the begin byte number of this field, which is specified in NVMe spec. It can be omitted if
begin is the same as end when the field has only 1 byte. Included. Default: None, means only get 1 byte defined
in byte_end

* type (type): the type of the field. It should be int or str. Default: int, convert to integer python object

Returns
(int or str): the data in the specified field

8.1.2 dump

Buffer.dump(size)

get the buffer content
Parameters

* size (int): the size of the buffer to print. Default: None, means to print the whole buffer

8.1. Buffer 37

pynvme, Release 2.3.2

8.1.3 phys_addr

physical address of the buffer

8.1.4 set_dsm_range

Buffer.set_dsm_range(index, lba, lba_count, attr)

set dsm ranges in the buffer, for dsm/deallocation (a.k.a. trim) commands
Parameters

¢ index (int): the index of the dsm range to set

« lba (int): the start Iba of the range

* lba_count (int): the Iba count of the range

e attr (int): context attributes of the range

8.2 Controller

Controller()

Controller class. Prefer to use fixture “nvme0” in test scripts.
Parameters
* pcie (Pcie): Pcie object, or Tep object for NVMe TCP targets

e nvme_init_func (callable, bool, None): True: no nvme init process, None: default process, callable: user
defined process function

Example

>>> n = Controller(Pcie('01:00.0"))

>>> hex(n[0]) # CAP register
'0x28030fff"’

>>> hex(n[0x1c]) # CSTS register
'Ox1'

>>> n.id_data(23, 4, str)
'TWO546VPLOHOO7A6003Y"

>>> n.supports(0x18)

False

>>> n.supports(0x80)

True

>>> id_buf = Buffer()

>>> n.identify() .waitdone()

>>> id_buf.dump(64)

buffer

00000000 a4 14 4b 1b 54 57 30 35 34 36 56 50 4c 4f 48 30 ..K.TWO546VPLOHO®
00000010 30 37 41 36 30 30 33 59 43 41 33 2d 38 44 32 35 07A6003YCA3-8D25
00000020 36 2d 51 31 31 20 4e 56 4d 65 20 4c 49 54 45 4f 6-Q11 NVMe LITEO
00000030 4e 20 32 35 36 47 42 20 20 20 20 20 20 20 20 20 N 256GB

>>> n.cmdlog(2)

(continues on next page)

8.2. Controller 38

pynvme, Release 2.3.2

(continued from previous page)

driver.c:1451:1og_cmd_dump: *NOTICE*: dump gpair 0, latest tail in cmdlog: 1
driver.c:1462:1og_cmd_dump: *NOTICE*: index 0, 2018-10-14 14:52:25.533708

nvme_gpair.c: 118:nvme_admin_gpair_print_command: *NOTICE*: IDENTIFY (06) sqid:0 cid:0.
—nsid:1 cdwl0:00000001 cdwll:00000000

driver.c:1469:1og_cmd_dump: *NOTICE*: index 0, 2018-10-14 14:52:25.534030

nvme_gpair.c: 306:nvme_gpair_print_completion: *NOTICE*: SUCCESS (00/00) sqid:0® cid:95.
—cdw0®:0 sghd:0142 p:1 m:0 dnr:0

driver.c:1462:1og_cmd_dump: *NOTICE*: index 1, 1970-01-01 07:30:00.000000

nvme_gpair.c: 118:nvme_admin_gpair_print_command: *NOTICE*: DELETE IO SQ (00) sqid:0.
—cid:® nsid:0 cdwl0:00000000 cdwll:00000000

driver.c:1469:1og_cmd_dump: *NOTICE*: index 1, 1970-01-01 07:30:00.000000

nvme_gpair.c: 306:nvme_qpair_print_completion: *NOTICE*: SUCCESS (00/00) sqid:0 cid:0.
—cdw0®:0 sghd:0000 p:® m:0 dnr:0

8.2.1 abort

Controller.abort(cid, sqid, cb)

abort admin commands

Parameters
¢ cid (int): command id of the command to be aborted
* sqid (int): sq id of the command to be aborted. Default: 0, to abort the admin command
¢ cb (function): callback function called at completion. Default: None

Returns
self (Controller)

8.2.2 aer

Controller.aer(cb)

asynchorous event request admin command.

Not suggested to use this command in scripts because driver manages to send and monitor aer commands. Scripts
should register an aer callback function if it wants to handle aer, and use the fixture aer.

Parameters
* cb (function): callback function called at completion. Default: None

Returns
self (Controller)

8.2. Controller 39

pynvme, Release 2.3.2

8.2.3 cap

64-bit CAP register of NVMe

8.2.4 cmdlog

Controller.cmdlog(count)

print recent commands and their completions.
Parameters

* count (int): the number of commands to print. Default: 0, to print the whole cmdlog

8.2.5 cmdname

Controller.cmdname (opcode)

get the name of the admin command
Parameters
¢ opcode (int): the opcode of the admin command

Returns
(str): the command name

8.2.6 downfw

Controller.downfw(filename, slot, action)

firmware download utility: by 4K, and activate in next reset

Parameters
* filename (str): the pathname of the firmware binary file to download
* slot (int): firmware slot field in the command. Default: 0, decided by device
* cb (function): callback function called at completion. Default: None

Returns

8.2.7 dst

Controller.dst(stc, nsid, cb)

device self test (DST) admin command
Parameters
e stc (int): selftest code (stc) field in the command
¢ nsid (int): nsid field in the command. Default: Oxffffftt

¢ cb (function): callback function called at completion. Default: None

8.2. Controller 40

pynvme, Release 2.3.2

Returns
self (Controller)

8.2.8 format

Controller. format(lbaf, ses, nsid, cb)

format admin command

Notice
This Controller.format only send the admin command. Use Namespace.format to maintain pynvme internal data!

Parameters
e Ibaf (int): Ibaf (Iba format) field in the command. Default: O
¢ ses (int): ses field in the command. Default: 0, no secure erase
 nsid (int): nsid field in the command. Default: 1
* cb (function): callback function called at completion. Default: None

Returns
self (Controller)

8.2.9 fw_commit

Controller. fw_commit(slot, action, cb)

firmware commit admin command
Parameters
« slot (int): firmware slot field in the command
* action (int): action field in the command
* cb (function): callback function called at completion. Default: None

Returns
self (Controller)

8.2.10 fw_download

Controller. fw_download(buf, offset, size, cbh)

firmware download admin command
Parameters
¢ buf (Buffer): the buffer to hold the firmware data
 offset (int): offset field in the command
e size (int): size field in the command. Default: None, means the size of the buffer
¢ cb (function): callback function called at completion. Default: None

Returns
self (Controller)

8.2. Controller 41

pynvme, Release 2.3.2

8.2.11 getfeatures

Controller.getfeatures(fid, sel, buf, cdwll, cdwl2, cdwl3, cdwl4, cdwl5,
cb)

getfeatures admin command
Parameters

e fid (int): feature id

cdwll (int): cdwll in the command. Default: O

¢ sel (int): sel field in the command. Default: 0

buf (Buffer): the buffer to hold the feature data. Default: None
¢ cb (function): callback function called at completion. Default: None

Returns
self (Controller)

8.2.12 getlogpage

Controller.getlogpage(lid, buf, size, offset, nsid, cb)

getlogpage admin command
Parameters
¢ lid (int): Log Page Identifier
* buf (Buffer): buffer to hold the log page
* size (int): size (in byte) of data to get from the log page,. Default: None, means the size is the same of the buffer
* offset (int): the location within a log page
¢ nsid (int): nsid field in the command. Default: Oxffffft
* cb (function): callback function called at completion. Default: None

Returns
self (Controller)

8.2.13 id_data

Controller.id_data(byte_end, byte_begin, type, nsid, cns, cntid, csi,
nvmsetid)

get field in controller identify data
Parameters
* byte_end (int): the end byte number of this field, which is specified in NVMe spec. Included.

* byte_begin (int): the begin byte number of this field, which is specified in NVMe spec. It can be omitted if
begin is the same as end when the field has only 1 byte. Included. Default: None, means only get 1 byte defined
in byte_end

* type (type): the type of the field. It should be int or str. Default: int, convert to integer python object

8.2. Controller 42

pynvme, Release 2.3.2

Returns
(int or str): the data in the specified field

8.2.14 identify

Controller.identify(buf, nsid, cns, cntid, csi, nvmsetid, cb)

identify admin command
Parameters
* buf (Buffer): the buffer to hold the identify data
¢ nsid (int): nsid field in the command. Default: 0
¢ cns (int): cns field in the command. Default: 1
* cb (function): callback function called at completion. Default: None

Returns
self (Controller)

8.2.15 init_adminq

Controller.init_adming()

used by NVMe init process in scripts

8.2.16 init_ns

Controller.init_ns(Q)

used by NVMe init process in scripts

8.2.17 init_queues

Controller.init_queues(cdw®)

used by NVMe init process in scripts

8.2.18 latest cid

cid of latest completed command

8.2. Controller 43

pynvme, Release 2.3.2

8.2.19 latest_latency

latency of latest completed command in us

8.2.20 mdts

max data transfer bytes

8.2.21 mi_receive

Controller.mi_receive(opcode, dword®, dwordl, buf, mtype, cb)

NVMe MI receive

Parameters

opcode (int): MI opcode

dword0 (int): MI request dword0

dword1 (int): MI request dword1

buf (Buffer): buffer to hold the response data

mtype (int): MI message type. Default:1, MI command set

cb (function): callback function called at completion. Default: None

Returns

self (Controller)

8.2.22 mi_send

Controller.mi_send(opcode, dword®, dwordl, buf, mtype, cb)

NVMe MI Send

Parameters

opcode (int): MI opcode

dword0 (int): MI request dwordO

dword1 (int): MI request dword1

buf (Buffer): buffer to hold the request data

mtype (int): MI message type. Default:1, MI command set

cb (function): callback function called at completion. Default: None

Returns

self (Controller)

8.2. Controller

44

pynvme, Release 2.3.2

8.2.23 reset

Controller.reset()

controller reset: cc.en 1 =>0=> 1

Notice
Test scripts should delete all io qpairs before reset!

8.2.24 sanitize

Controller.sanitize(option, pattern, cb)

sanitize admin command

Parameters
* option (int): sanitize option field in the command
 pattern (int): pattern field in the command for overwrite method. Default: Ox5aa5aS55a
 cb (function): callback function called at completion. Default: None

Returns
self (Controller)

8.2.25 security_receive

Controller.security_receive(buf, spsp, secp, nssf, size, cb)

admin command: security receive
Parameters
¢ buf (Buffer): buffer of the data received
* spsp: SP specific 0/1, 16bit filed
* secp: security protocal, default 1, TCG
* nssf: NVMe security specific field: default 0, reserved
e size: size of the data to receive, default the same size of the buffer

* cb (function): callback function called at cmd completion

8.2.26 security_send

Controller.security_send(buf, spsp, secp, nssf, size, cb)

admin command: security send

Parameters
¢ buf (Buffer): buffer of the data sending
* spsp: SP specific 0/1, 16bit filed

* secp: security protocal, default 1, TCG

8.2. Controller

45

pynvme, Release 2.3.2

* nssf: NVMe security specific field: default 0, reserved
e size: size of the data to send, default the same size of the buffer

 cb (function): callback function called at cmd completion

8.2.27 send cmd

Controller.send_cmd(opcode, buf, nsid, cdwl®, cdwll, cdwl2, cdwl3, cdwl4,
cdwl5, cb)

send generic admin commands.

This is a generic method. Scripts can use this method to send all kinds of commands, like Vendor Specific commands,
and even not existed commands.

Parameters
 opcode (int): operate code of the command
¢ buf (Buffer): buffer of the command. Default: None
¢ nsid (int): nsid field of the command. Default: O
* cb (function): callback function called at completion. Default: None

Returns
self (Controller)

8.2.28 setfeatures

Controller.setfeatures(fid, sv, buf, cdwll, cdwl2, cdwl3, cdwl4, cdwl5,
cb)

setfeatures admin command
Parameters
« fid (int): feature id
e cdwll (int): cdwll1 in the command. Default: 0
¢ sy (int): sv field in the command. Default: 0
¢ buf (Buffer): the buffer to hold the feature data. Default: None
* cb (function): callback function called at completion. Default: None

Returns
self (Controller)

8.2. Controller 46

pynvme, Release 2.3.2

8.2.29 supports

Controller. supports(opcode)

check if the admin command is supported
Parameters
 opcode (int): the opcode of the admin command

Returns
(bool): if the command is supported

8.2.30 timeout

timeout value of this controller in milli-seconds.

It is configurable by assigning new value in milli-seconds.

8.2.31 waitdone

Controller.waitdone(expected)

sync until expected admin commands completion

Notice
Do not call this function in commands callback functions.

Parameters
 expected (int): expected commands to complete. Default: 1

Returns
(int): ¢dwO of the last command

8.3 Namespace

Namespace()

Namespace class.

Parameters
¢ nvme (Controller): controller where to create the queue
* nsid (int): nsid of the namespace. Default 1

* nlba_verify (long): number of LBAs where data verificatoin is enabled. Default 0, the whole namespace

8.3. Namespace 47

pynvme, Release 2.3.2

8.3.1 capacity

bytes of namespace capacity

8.3.2 close

Namespace.close()

close to explictly release its resources instead of del

8.3.3 cmdname

Namespace . cmdname (opcode)

get the name of the IO command
Parameters
* opcode (int): the opcode of the IO command

Returns
(str): the command name

8.3.4 compare

Namespace.compare(gpair, buf, lba, lba_count, io_flags, cb)

compare IO command

Notice
buf cannot be released before the command completes.

Parameters

¢ gpair (Qpair): use the gpair to send this command

* buf (Buffer): the data buffer of the command, meta data is not supported.

Iba (int): the starting lba address, 64 bits

¢ lba_count (int): the Iba count of this command, 16 bits. Default: 1

* jo_flags (int): io flags defined in NVMe specification, 16 bits. Default: 0
* cb (function): callback function called at completion. Default: None

Returns

gpair (Qpair): the gpair used to send this command, for ease of chained call

Raises

¢ SystemError: the command fails

8.3. Namespace

48

pynvme, Release 2.3.2

8.3.5 dsm

Namespace.dsm(qpair, buf, range_count, attribute, cb)

data-set management IO command

Notice
buf cannot be released before the command completes.

Parameters

e gpair (Qpair): use the gpair to send this command

buf (Buffer): the buffer of the lba ranges. Use buffer.set_dsm_range to prepare the buffer.
* range_count (int): the count of Iba ranges in the buffer

 attribute (int): attribute field of the command. Default: 0x4, as deallocation/trim

* cb (function): callback function called at completion. Default: None

Returns
gpair (Qpair): the gpair used to send this command, for ease of chained call

Raises

e SystemError: the command fails

8.3.6 flush

Namespace. flush(gpair, cb)

flush IO command
Parameters
¢ gpair (Qpair): use the gpair to send this command
* cb (function): callback function called at completion. Default: None

Returns
gpair (Qpair): the gpair used to send this command, for ease of chained call

Raises

e SystemError: the command fails

8.3.7 format

Namespace. format (data_size, meta_size, ses)

change the format of this namespace

Notice
Namespace.format() not only sends the admin command, but also updates driver to activate new format imme-
diately. Recommend to use this API to do format. Close and re-create namespace when lba format is changed.

Parameters

e data_size (int): data size. Default: 512

8.3. Namespace 49

pynvme, Release 2.3.2

e meta_size (int): meta data size. Default: 0
¢ ses (int): ses field in the command. Default: 0, no secure erase

Returns
int: cdwO of the format admin command

8.3.8 get_Iba_format

Namespace.get_lba_format(data_size, meta_size)

find the 1ba format by its data size and meta data size
Parameters

e data_size (int): data size. Default: 512

¢ meta_size (int): meta data size. Default: O

Returns
(int or None): the lba format has the specified data size and meta data size

8.3.9 id_data

Namespace.id_data(byte_end, byte_begin, type, cns, csi, cntid)

get field in namespace identify data
Parameters
* byte_end (int): the end byte number of this field, which is specified in NVMe spec. Included.

* byte_begin (int): the begin byte number of this field, which is specified in NVMe spec. It can be omitted if
begin is the same as end when the field has only 1 byte. Included. Default: None, means only get 1 byte defined
in byte_end

* type (type): the type of the field. It should be int or str. Default: int, convert to integer python object

Returns
(int or str): the data in the specified field

8.3.10 ioworker

Namespace.ioworker(io_size, lba_step, lba_align, lba_random,
read_percentage, op_percentage, time, qdepth,
region_start, region_end, iops, io_count, lba_start,
gprio, distribution, ptype, pvalue, io_sequence,
fw_debug, output_io_per_second,
output_percentile_latency, output_cmdlog_list)

workers sending different read/write IO on different CPU cores.

User defines 1O characteristics in parameters, and then the ioworker executes without user intervesion, until the test is
completed. IOWorker returns some statistic data at last.

User can start multiple [OWorkers, and they will be binded to different CPU cores. Each IOWorker creates its own
Qpair, so active IOWorker counts is limited by maximum IO queues that DUT can provide.

8.3. Namespace 50

pynvme, Release 2.3.2

Each ioworker can run upto 24 hours.
Parameters

* io_size (short, range, list, dict): 10 size, unit is LBA. It can be a fixed size, or a range or list of size, or specify
ratio in the dict if they are not evenly distributed. 1base. Default: 8, 4K

* lba_step (short): valid only for sequential read/write, jump to next LBA by the step. Default: None, same as
io_size, continous IO.

* lba_align (short): 10 alignment, unit is LBA. Default: None: means 1 Iba.

¢ lba_random (int, bool): percentage of radom io, or True if sending IO with all random starting LBA. Default:
True

* read_percentage (int): sending read/write mixed IO, 0 means write only, 100 means read only. Default: 100.
Obsoloted by op_percentage

* op_percentage (dict): opcode of commands sent in ioworker, and their percentage. Output: real io counts sent
in ioworker. Default: None, fall back to read_percentage

e time (int): specified maximum time of the IOWorker in seconds, up to 1000*3600. Default:0, means no limit
* qdepth (int): queue depth of the Qpair created by the IOWorker, up to 1024. 1base value. Default: 64

* region_start (long): sending IO in the specified LBA region, start. Default: 0

* region_end (long): sending IO in the specified LBA region, end but not include. Default: Oxffff_ffff ffff_fift
* iops (int): specified maximum IOPS. IOWorker throttles the sending IO speed. Default: 0, means no limit

* jo_count (long): specified maximum IO counts to send. Default: 0, means no limit

* lba_start (long): the LBA address of the first command. Default: 0, means start from region_start

* gprio (int): SQ priority. Default: 0, as Round Robin arbitration

¢ distribution (list(int)): distribute 10,000 IO to 100 sections. Default: None

* pvalue (int): data pattern value. Refer to data pattern in class Buffer. Default: 100 (100%)

* ptype (int): data pattern type. Refer to data pattern in class Buffer. Default: Oxbeef (random data)

* io_sequence (list): io sequence of captured trace from real workload. Ignore other input parameters when
io_sequence is given. Default: None

 output_io_per_second (list): list to hold the output data of io_per_second. Default: None, not to collect the
data

* output_percentile_latency (dict): dict of io counter on different percentile latency. Dict key is the percentage,
and the value is the latency in micro-second. Default: None, not to collect the data

* output_cmdlog_list (list): list of dwords of lastest commands completed in the ioworker. Default: None, not to
collect the data

Returns
ioworker instance

8.3. Namespace 51

pynvme, Release 2.3.2

8.3.11 nsid

id of the namespace

8.3.12 read

Namespace.read(qpair, buf, lba, lba_count, io_flags, dwordl3, dwordl4,
dword15, cb)

read IO command

Notice
buf cannot be released before the command completes.

Parameters
¢ gpair (Qpair): use the gpair to send this command
* buf (Buffer): the data buffer of the command, meta data is not supported.
¢ lba (int): the starting lba address, 64 bits
* lba_count (int): the Iba count of this command, 16 bits. Default: 1
* io_flags (int): io flags defined in NVMe specification, 16 bits. Default: 0
¢ dword13 (int): command SQE dword13
¢ dword14 (int): command SQE dword14
¢ dword15 (int): command SQE dword15
* cb (function): callback function called at completion. Default: None

Returns
gpair (Qpair): the gpair used to send this command, for ease of chained call

8.3.13 send_cmd

Namespace.send_cmd(opcode, qgpair, buf, nsid, cdwl®, cdwll, cdwl2, cdwl3,
cdwl4, cdwl5, cb)

send generic IO commands.

This is a generic method. Scripts can use this method to send all kinds of commands, like Vendor Specific commands,
and even not existed commands.

Parameters
 opcode (int): operate code of the command

* gpair (Qpair): gpair used to send this command

buf (Buffer): buffer of the command. Default: None
¢ nsid (int): nsid field of the command. Default: O
cdwlx (int): command SQE dword10 - dword15

cb (function): callback function called at completion. Default: None

8.3. Namespace 52

pynvme, Release 2.3.2

Returns
gpair (Qpair): the gpair used to send this command, for ease of chained call

8.3.14 supports

Namespace. supports(opcode)

check if the IO command is supported
Parameters
* opcode (int): the opcode of the IO command

Returns
(bool): if the command is supported

8.3.15 verify

Namespace.verify(gpair, 1lba, lba_count, io_flags, cb)

verify IO command
Parameters

¢ gpair (Qpair): use the gpair to send this command

Iba (int): the starting lba address, 64 bits

¢ lba_count (int): the Iba count of this command, 16 bits. Default: 1

* io_flags (int): io flags defined in NVMe specification, 16 bits. Default: O
* cb (function): callback function called at completion. Default: None

Returns
gpair (Qpair): the gpair used to send this command, for ease of chained call

Raises

¢ SystemError: the read command fails

8.3.16 verify_enable

Namespace.verify_enable(enable)

enable or disable the inline verify function of the namespace
Parameters
* enable (bool): enable or disable the verify function

Returns
(bool): if it is enabled successfully

8.3. Namespace

53

pynvme, Release 2.3.2

8.3.17 write

Namespace.write(gpair, buf, lba, lba_count, io_flags, dwordl3, dwordl4,
dwordl5, cb)

write IO command

Notice
buf cannot be released before the command completes.

Parameters
* gpair (Qpair): use the gpair to send this command
* buf (Buffer): the data buffer of the write command, meta data is not supported.
* lba (int): the starting Iba address, 64 bits
¢ lba_count (int): the Iba count of this command, 16 bits
* jo_flags (int): io flags defined in NVMe specification, 16 bits. Default: 0
¢ dword13 (int): command SQE dword13
¢ dword14 (int): command SQE dword14
¢ dword15 (int): command SQE dword15
¢ cb (function): callback function called at completion. Default: None

Returns
gpair (Qpair): the gpair used to send this command, for ease of chained call

8.3.18 write_uncorrectable

Namespace.write_uncorrectable(gpair, lba, lba_count, cb)

write uncorrectable IO command
Parameters
 gpair (Qpair): use the gpair to send this command
¢ lba (int): the starting Iba address, 64 bits
¢ lba_count (int): the Iba count of this command, 16 bits. Default: 1
¢ cb (function): callback function called at completion. Default: None

Returns
gpair (Qpair): the gpair used to send this command, for ease of chained call

Raises

e SystemError: the command fails

8.3. Namespace

54

pynvme, Release 2.3.2

8.3.19 write_zeroes

Namespace.write_zeroes(gpair, lba, lba_count, io_flags, ch)

write zeroes I0 command
Parameters

¢ gpair (Qpair): use the gpair to send this command

Iba (int): the starting lba address, 64 bits

¢ lba_count (int): the Iba count of this command, 16 bits. Default: 1

* jo_flags (int): io flags defined in NVMe specification, 16 bits. Default: 0
* cb (function): callback function called at completion. Default: None

Returns
gpair (Qpair): the gpair used to send this command, for ease of chained call

Raises

¢ SystemError: the command fails

8.4 Pcie

Pcie()

Pcie class to access PCle configuration and memory space
Parameters

¢ addr (str): BDF address of PCle device

8.4.1 aspm

config new ASPM Control:
Parameters
 control: ASPM control field in Link Control register:
b00: ASPM is disabled
b01: LOs
* b10: L1
b11: LOs and L1

8.4. Pcie

55

pynvme, Release 2.3.2

8.4.2 cap_offset

Pcie.cap_offset(cap_id)

get the offset of a capability
Parameters
¢ cap_id (int): capability id

Returns
(int): the offset of the register, or None if the capability is not existed

8.4.3 close

Pcie.close()

close to explictly release its resources instead of del

8.4.4 power_state

config new power state:
Parameters
* state: new state of the PCle device:
* 0: DO
* 1: D1
« 2: D2
* 3: D3hot

8.4.5 register

Pcie.register(offset, byte_count)

access registers in pcie config space, and get its integer value.
Parameters
« offset (int): the offset (in bytes) of the register in the config space
* byte_count (int): the size (in bytes) of the register. Default: 4, dword

Returns
(int): the value of the register

8.4. Pcie

56

pynvme, Release 2.3.2

8.4.6 reset

Pcie.reset(rst_fn)

reset this pcie device with hot reset

Notice
call Controller.reset() to re-initialize controller after this reset

8.5 Qpair

‘ Qpair(Q)

Qpair class. 10 SQ and CQ are combinded as gpairs.
Parameters
* nvme (Controller): controller where to create the queue

depth (int): SQ/CQ queue depth

e prio (int): when Weighted Round Robin is enabled, specify SQ priority here

ien (bool): interrupt enabled. Default: True

¢ iv (short): interrupt vector. Default: Oxffff, choose by driver

8.5.1 cmdlog

Qpair.cmdlog(count)

print recent IO commands and their completions in this gpair.
Parameters

* count (int): the number of commands to print. Default: 0, to print the whole cmdlog

8.5.2 delete

Qpair.delete()

delete gpair’s SQ and CQ

8.5.3 latest_cid

cid of latest completed command

8.5. Qpair 57

pynvme, Release 2.3.2

8.5.4 latest_latency

latency of latest completed command in us

8.5.5 sqid

submission queue id in this qpair

8.5.6 waitdone

Qpair.waitdone(expected)

sync until expected IO commands completion

Notice
Do not call this function in commands callback functions.

Parameters
* expected (int): expected commands to complete. Default: 1

Returns
(int): ¢dwO of the last command

8.6 srand

srand(seed)

manually setup random seed
Parameters

* seed (int): the seed to setup for both python and C library

8.7 Subsystem

Subsystem()

Subsystem class. Prefer to use fixture “subsystem” in test scripts.
Parameters
* nvme (Controller): the nvme controller object of that subsystem
* poweron_cb (func): callback of poweron function

* poweroff_cb (func): callback of poweroff function

8.6. srand 58

pynvme, Release 2.3.2

8.7.1 power_cycle

Subsystem.power_cycle(sec)

power off and on in seconds

Notice
call Controller.reset() to re-initialize controller after this power cycle

Parameters

* sec (int): the seconds between power off and power on

8.7.2 poweroff

Subsystem.poweroff()

power off the device by the poweroff function provided in Subsystem initialization

8.7.3 poweron

Subsystem.poweron()

power on the device by the poweron function provided in Subsystem initialization

Notice
call Controller.reset() to re-initialize controller after this power on

8.7.4 reset

Subsystem.reset()

reset the nvme subsystem through register nssr.nssrc

Notice
call Controller.reset() to re-initialize controller after this reset

8.7.5 shutdown_notify

Subsystem. shutdown_notify(abrupt)

notify nvme subsystem a shutdown event through register cc.shn

Parameters

¢ abrupt (bool): it will be an abrupt shutdown (return immediately) or clean shutdown (wait shutdown completely)

8.7. Subsystem

59

pynvme, Release 2.3.2

8.8 Tcp

TcpO

Tcp class for NVMe TCP target
Parameters
* addr (str): IP address of TCP target
¢ port (int): the port number of TCP target. Default: 4420

8.8. Tep 60

	Introduction
	Background
	Design

	Install
	All-in-One
	System Requirements
	Source Code
	Prerequisites
	SPDK
	Test
	pip

	Pytest
	Fixtures
	Execution

	VSCode
	Layout
	Setup

	Features
	PCIe
	Buffer
	data pattern

	Controller
	NVMe Initialization
	Admin Commands
	Command Callback
	Identify Data
	Generic Commands
	Utility Functions
	Timeout
	Asynchronous Event Request
	Multiple Controllers

	Qpair
	Interrupt
	Cmdlog
	Notice

	Namespace
	IO Commands
	Trim
	Generic Commands
	Data Verify

	IOWorker
	Return Data
	Output Parameters
	Concurrent
	Performance
	Input Parameters

	Miscellaneous
	Power
	Reset
	Random Number
	Python Space Drive

	Examples
	Ex1: hello world
	Ex2: sanitize
	Ex3: parameterized tests
	Ex4: upgrade and reboot the drive
	Ex5: write drive and monitor temperature
	Ex6: multiple ioworkers on different namespaces and controllers
	Ex7: format and fused operations

	Development
	Files
	Repository
	CI
	Debug
	Socket

	nvme
	Buffer
	data
	dump
	phys_addr
	set_dsm_range

	Controller
	abort
	aer
	cap
	cmdlog
	cmdname
	downfw
	dst
	format
	fw_commit
	fw_download
	getfeatures
	getlogpage
	id_data
	identify
	init_adminq
	init_ns
	init_queues
	latest_cid
	latest_latency
	mdts
	mi_receive
	mi_send
	reset
	sanitize
	security_receive
	security_send
	send_cmd
	setfeatures
	supports
	timeout
	waitdone

	Namespace
	capacity
	close
	cmdname
	compare
	dsm
	flush
	format
	get_lba_format
	id_data
	ioworker
	nsid
	read
	send_cmd
	supports
	verify
	verify_enable
	write
	write_uncorrectable
	write_zeroes

	Pcie
	aspm
	cap_offset
	close
	power_state
	register
	reset

	Qpair
	cmdlog
	delete
	latest_cid
	latest_latency
	sqid
	waitdone

	srand
	Subsystem
	power_cycle
	poweroff
	poweron
	reset
	shutdown_notify

	Tcp

